
Marrying Unknown Cyber and
LLM to Detect Supply Chain
Attacks

August 6, 2024

Learn how Unknown Cyber used a
combination of automated shared-
code analysis and ChatGPT to
uncover a potential supply chain
attack.

Technical Report 2024 2

Executive Summary

The Trigger

Confirm the Presence of Supply Chain Attack

What Does the Trojan Code Do?

Expand Search Through Sharing of Malicious Code

Summary

Challenge

Recommendations

References

Appendix A: Maliciousness Analysis

Appendix B: MITRE ATT&CK Framework

Appendix C: Trojan Versions of Legitimate DLLs

Authors

About Unknown Cyber

About Global Data Systems

03

04

06

07

10

12

12

13

14

16

18

20

22

23

23

Table of Contents

Technical Report 2024 3

A few weeks ago, UC received a NEW DLL
from a customer using our services for
software supply chain audit. Our system,
UC MAGIC, which uses code-similarity
based search, detected that this DLL was
0.9886-level similar to a DLL known to be
malicious (MALWARE DLL). MAGIC
measures similarity on a scale from 0 to 1
by comparing the ‘genome’ extracted from
the disassembled code of binaries. A
genomic difference analysis between the
NEW and MALWARE DLLs revealed that the
MALWARE DLL contained 21 additional
functions that were not present in the
NEW DLL.

An analysis of these 21 additional
functions by ChatGPT 4o uncovered
capabilities corresponding to nine Tactics
Techniques & Procedures (TTPs) in the
MITRE ATT&CK framework (see Appendix
B). By tracing the code connections in our
shared-code repository, we discovered 12
other DLLs containing functions identified
as malicious by ChatGPT 4o. Additionally,
we created a Yara rule from the bytecode
of these malicious functions and used it to
retro hunt on Hybrid Analysis. The hunt
identified 13 more DLLs containing the
same malicious code.

As all the DLLs identified are compromised
versions of popular DLLs, including 22 from
Microsoft, we are likely looking at a supply
chain attack similar to the SolarWinds
incident [1,2]. Fortunately, unlike the
compromised SolarWinds DLLs, these
trojans are not signed. However, this is
only a slight reassurance since, according
to VirusTotal, 10 out of the 26 trojans are
not detected as malicious by over 50% of
its antivirus scanners.

Executive Summary

Furthermore, the 26 trojans do not belong
to a single malware family but are
associated with various information
stealers, including Agent Tesla,
AsyncRAT, DCRat, Formbook, NjRAT,
Raccoon, RedLine, Snake, and Vidar. This
shared code among different malware
families implies a sharing of resources
between the threat actors behind them.
These threat actors may either be
managed by a single entity or use a
common third-party tool or service to
infect DLLs. In either case, our Yara rule
can be used to scan for trojans infected
by the same mechanism, including those
not yet identified and reported to large
malware repositories.

In summary, this case study
demonstrates that by marrying
automated shared-code analysis with
LLMs it is feasible to cost-effectively
audit software and software updates for
the presence of malicious or otherwise
unexpected capabilities. Starting with
one NEW DLL, we identified 26 Trojan
DLLs by utilizing UC’s ability to rapidly
search a large repository of executables
based on code similarity, perform pairwise
differences to identify common and
differing code, analyze disassembled
code for malicious behavior, identify
specific malicious functions, trace shared
code in the repository, and generate Yara
rules from the bytecode of specific
functions. All this was be done without
using sandboxes or expertise in reverse
engineering.

Recommendations to use the combined
power of UC and LLM for post-release
audits of software and Software Bill of
Materials (SBOMs) are provided.

Technical Report 2024 4

Global Data Systems (GDS), a Managed
Security Service Provider, relies on
Unknown Cyber (UC) for software supply
chain audits to prevent SolarWinds-like
supply chain attacks on their customers’
networks. They employ state-of-the-art
malware prevention technologies at all
critical points where files can be
downloaded, read, written, or executed.
Despite these efforts, they encounter
70-100 files daily for which these
technologies cannot definitively determine
if they are benign or malicious even after
detonating in a sandbox. Files with an
‘unknown’ verdict are sent to UC for further
analysis to resolve these uncertainties.

In June 2024, the GDS uploaded a DLL
named Newsoft.JSON.DLL “(first SHA256
hash in Table 1)”. This popular .NET DLL is
used for serializing and deserializing JSON
data. The DLL was intercepted by GDS on a
developer’s machine when the developer
activated the related package in Visual
Studio. As this was the first use of this DLL
by the developer, it was not on the MSSP’s
‘permitted programs’ list and received an

The Trigger

Figure 1
Checking for
Potentially
Malicious Code
using Code
Proximity

‘unknown’ verdict from their anti-malware
system.

UC employs a code-proximity based
search to automatically identify programs
in its repository that share a significant
amount of code with the unknown
program. The reputation of these similar
files is retrieved from VirusTotal. If any of
the files are malicious, an in-depth
analysis is triggered.

Figure 1 diagrammatically represents the
process of determining potentially
malicious code using code proximity. UC’s
code-proximity based search found nine
programs in its repository with a 0.7 or
higher level of code similarity to the NEW
DLL. UC computes code similarity as a
measure between 0 and 1 based on the
amount of code shared between two
binaries. Table 1 presents the results of
the search, with the first SHA256 hash
being that of the NEW DLL. The remaining
hashes are listed in decreasing order of
similarity.

NEW
EXEs
/DLLS

UC
MAGIC

EXEs/DLLs
with Similar
Code

Virus
Total

Detection
Ratio

Technical Report 2024 5

Table 1 also shows the AV Detection Ratio
for each hash as reported by VirusTotal.
None of the 74 scanners (0/74) flagged
NEW DLL as malicious. Similarly, seven
other files are not flagged malicious by
any scanner. However, two hashes,
second and ninth, are flagged as
malicious by 51/74 and 35/71 scanners.
The DLL in the second row, henceforth
referred to as MALWARE DLL, also has the
highest code similarity with NEW DLL.

This discrepancy was the trigger. Why are
the two files, NEW DLL and MALWARE DLL,
assigned opposite reputations—one
benign (or more precisely, not flagged as

1. UC is wrong:
NEW DLL and MALWARE DLL do not actually
share code at any significant level.

2. VirusTotal is wrong:
The reputation assigned by VirusTotal to
one of the files is incorrect. If so, which
one?

3. Neither UC nor VirusTotal are wrong:
MALWARE DLL is a trojanized version of
NEW DLL.

Table 1
The UC MAGIC matches that triggered this analysis

SHA256 Similarity
AV

Detection
Ratio

b624949df8b0e3a6153fdfb730a7c6f4990b6592ee0d922e1788433d276610f3 (NEW)

22c649f75fce5be7c7ccda8880473b634ef69ecf33f5d1ab8ad892caf47d5a07

7ea00ce56000a486b59d5f411791af562c2c2f7d2c9de05930d97f4efbcb373d

d52dc9db3cfa3131926fcb6dedd68d0a8be3413ec38210b262def777b1f3cf7c

5110b8934e6db5a5f990829c445829df09e29c5e0cd9fb6253709344e9d1a5d3

8d29d1cb1bb450bfee7b3e9b1dfb00372e25fb6dc88d9bfa33bdc3d78adfd0eb

e1e27af7b07eeedf5ce71a9255f0422816a6fc5849a483c6714e1b472044fa9d

15bad895c6afb47d3dbf662a5743d49ce0bba45b110b494645d92b2db423ac4c (MALWARE)

0d3d349ba4887068a012cc4dc16dc1e7ca11245816a01fb254009e5c8958b829

c5c83bbc1741be6ff4c490c0aee34c162945423ec577c646538b2d21ce13199e

0/74

51/74

0/66

0/64

0/71

0/70

0/48

0/69

35/71

0/70

self

0.9886

0.9399

0.9399

0.9301

0.9297

0.9047

0.8377

0.7927

0.7794

malicious) and the other malicious—when
they share 0.9886 level similar code?
There are three possibilities:

Technical Report 2024 6

Files: Two malicious
Eight not-malicious

Author: Same
Filename: Same

Malicious: Unsigned
Non-maliccious: Signed

Meta Data

One way to resolve the reason for the
discrepancies in the reputation
assignment of the two DLLs with similar
code is to review their metadata, as
shown in Figure 2.

The first possibility, “UC is wrong,” can be
quickly dismissed (or at least,
probabilistically put to rest) from the
metadata of these files. Both the NEW DLL
and MALWARE DLL share two significant
attributes: they are authored by James
Newton King and have the filename
NewtonSoft.JSON.DLL. UC’s similarity
assessment does not utilize metadata, so
the odds that it randomly identified two
files with the same author and filename
from millions in VirusTotal’s database
when these files do not share code, are
astronomically low. Moreover, this isn’t
limited to just the NEW DLL and MALWARE
DLL—the remaining eight files also share
the same author and filename. Thus, the
probability of UC being wrong is negligibly
small.

Confirm the Presence of
Supply Chain Attack

The metadata also provides evidence
that counters the second possibility, “VT
is wrong.” It shows that while all eight
files with zero detections are signed with
valid signatures, the two files flagged as
malicious are not signed. What is the
likelihood that a company known for
releasing signed DLLs would also release
two unsigned DLLs? There are several
scenarios where this might happen, but
one plausible explanation is that the
company did not release these unsigned
DLLs—someone else did. Thus, VT is most
likely right that the NEW DLL is not
malicious.

This leads to the third possibility,
“MALWARE DLL is a trojanized version of
NEW DLL.” The fact that the two malicious
DLLs in Table 1 have very similar code to
legitimate DLLs and have the same
filename and author suggests an
attempted supply chain attack akin to
the notorious Sunburst attack. In that
incident, a legitimate SolarWinds program
used by many large enterprises
worldwide was compromised and
distributed through normal software
update channels.

The data thus far appears to point to an
attempt at a supply chain attack, albeit
not on the MSSP customer’s network. It
appears that someone may be leveraging
NewSoft.JSON.DLL’s popularity to
penetrate a supply chain. That the
malicious DLLs were not signed indicates
that the attack may not be as
sophisticated as Sunburst. It could be
that the attack is delivered through
pirated software downloads or other
unsigned programs.

Figure 2
Quick
Resolution of
Hypotheses
using
Metadata

Technical Report 2024 7

Having established, albeit
probabilistically, that the NEW DLL is not
compromised, we still need to understand
what the MALWARE DLL does. Since NEW
DLL and MALWARE DLL have a 0.9886
similarity in code, it is essential to analyze
the unique code present in MALWARE DLL
but absent in NEW DLL.

What Does the Trojan
Code Do?

Figure 3
Identifying
Trojan Code &
Determining
What it Does

We follow a two-step process to
accomplish this, as shown in Figure 3.
First, we identify the code that is only in
MALWARE DLL. Second, we request an
analysis from ChatGPT.

Table 2
Comparison
of Functions
Genomes of
NEW DLL and
MALWARE
DLL

Functions Count

 1,826

 1,847

 1,847

 1,826

0

 21

In NEW DLL

In MALWARE DLL

Union of the two DLLs

Intersection of the two DLLs

Only in NEW DLL

Only in MALWARE DLL

We use UC’s Genomic Diff to identify the
functions unique to MALWARE DLL. Table
2 summarizes the results of the Genomic
Diff of the two samples. The data shows
that all the functions in NEW DLL are
entirely subsumed in MALWARE DLL.
There are no functions in NEW DLL that
are not in MALWARE DLL, but there are 21
functions in MALWARE DLL that are not in
NEW DLL. This strengthens the possibility
that MALWARE DLL was created by
inserting code into a copy of NEW DLL.

UC
Genomic
DLL

ChatGPT
Malware
Analysis

ChatGPT Report:
verdict Code Analysis
IOCs MITRETTPS

NEW DLL
(Not
malicious) Trojan

Functions
Only in
MALWARE
DLLMALWARE

DLL

Technical Report 2024 8

Table 3 lists the 21 functions unique to
MALWARE DLL. It presents each function’s
Name, the Namespace, and the Class it
belongs to. All the names follow a pattern:
either a meaningful word, like `Main` and
`get_ResourceManager`, or a meaningful
word prefixed by three arbitrary letters,
like `Yqnpressure` and `tndthemselves`.
The 3-letter prefix often encodes
information relevant to the compiler, while

Table 3
Functions
unique to
MALWARE DLL

RVA Namespace Class Name

0x37f70

0x37fe0

0x38000

0x38030

0x38060

0x380a0

0x380f0

0x38160

0x381b0

0x381d0

0x381f0

0x38220

0x38230

0x38260

Yqnpressure

Yqnpressure

Yqnpressure

Yqnpressure

Yqnpressure

Hdbcredit

Epfgreatest.Ztdvoter

Cllindeed

Cllindeed

Epfgreatest.Properties

Epfgreatest.Properties

Eixdrink

Eixdrink

Eixdrink

Ujbexpert

Ujbexpert

Ujbexpert

Ujbexpert

Ujbexpert

Tndthemselves

Static

Lqphall

Lqphall

Sexrecipe

Sexrecipe

Ogksubstantial

Ogksubstantial

Ogksubstantial

.ctor

Dmcmargin

Akucotton

Dppproducer

Dwgsurely

Vpechairman

Main

get_ResourceManager

set_Culture

get_Default

.cctor

.ctor

Fmfcreate

Hohadvice

the meaningful word typically indicates
the purpose of the namespace, class, or
method. Words like `pressure`, `credit`,
`drink`, `beer`, and `Sexrecipe`, used in
Table 3, seem out of place in a library
that serializes and deserializes JSON,
suggesting an attempt to obfuscate the
functions’ purposes. Such obfuscation is
commonly done programmatically when
a DLL is bundled for shipping.

Technical Report 2024 9

0x382d0

0x382f0

0x38310

0x38330

0x38420

0x384e0

0x38510

Epfgreatest.UndoRedo

Epfgreatest.UndoRedo

Epfgreatest.UndoRedo

Epfgreatest.UndoRedo

Asvbeer

Advinstruction

Advinstruction

Mwztarget

Mwztarget

Mwztarget

Mwztarget

Isveventually

Fjyfact

Fjyfact

.ctor

Ehgflee

Vuuown

Kcldrama

Plnarrive

Fikcut

.ctor

Next, we gave ChatGPT 4o the
disassembled code of the 21 functions in
the above table along with the following
prompt (taken verbatim from [3]).

ChatGPT concluded that the 21 functions
represented malware and provided the
following summary:

The code exhibits characteristics typical
of malware, including obfuscation,
dynamic assembly loading, and state
manipulation. The extensive use of late
binding and reflection further suggests
attempts to evade static analysis.
Therefore, it is highly recommended to
treat this executable as malicious and
perform further dynamic analysis to
uncover its full behavior.

“Act as a malware analyst by thoroughly examining this
decompiled executable code. Methodically break down each
step, focusing keenly on understanding the underlying logic
and objective. Your task is to craft a detailed summary that
encapsulates the code’s behavior, pinpointing any malicious
functionality. Start with a verdict (Benign or Malicious), then
a list of activities including a list of Indicators of Compromise
(IOCs) if any URLs, created files, registry entries, mutex,
network activity, etc.”

Specifically, ChatGPT identified the
following malicious behaviors:

•	 Obfuscation and Decryption: The
`Asvbeer.Isveventually::Plnarrive`
function suggests obfuscation
techniques, involving base64 encoding
and XOR operations to manipulate byte
arrays, potentially indicating payload
decryption.

•	 Dynamic Assembly Loading: The
`Epfgreatest.Ztdvoter::Main` function
dynamically loads assemblies and
executes methods, which is a common
technique used in malware to execute
payloads at runtime.

The complete response from ChatGPT is
provided in Appendix A.

Subsequently, we asked ChatGPT to map
the malicious behaviors to the MITRE
ATT&CK TTPs. ChatGPT identified nine
MITRE ATT&CK TTPs, including dynamic
component loading, obfuscation with
base64 encoding and XOR mask, and
process injection. The complete response
from ChatGPT is provided in Appendix B.

Technical Report 2024 10

The fact that MALWARE DLL is unsigned
suggests that James Newton King’s
infrastructure was unlikely compromised,
indicating the attack may have occurred
post-release. The trojan code, consisting
of the 21 functions and associated data,
could have been introduced using a .NET
DLL editing tool like Resource Hack. If the
trojan variant of NewSoft.JSON.DLL was
created by injecting code into a legitimate
copy of NewSoft.JSON.DLL, it’s plausible
that other DLLs could be similarly
compromised at minimal additional cost.
Consequently, we can expect to find
trojan versions of other legitimate DLLs.

Our next step is to identify other DLLs
containing the same trojan code. We do
this by first identifying some interesting
trojan code using ChatGPT’s analysis and
then using two parallel steps: search UC’s
repository and search third-party
repositories. Figure 4 summarizes the
process followed, with detailed steps
presented below.

Expand Search Through Sharing
of Malicious Code

The ChatGPT report had identified the
following to functions to a play a role in
decoding and injecting the payload
carried by the trojan:

•	 Asvbeer.Isveventually::Plnarrive
(0x38420)

•	 Epfgreatest.Ztdvoter::Main
(0x380f0)

Using UC Function Trace, we found
other files in our repository containing
these two trojan functions. Finding
such DLLs in UC MAGIC’s database is
straightforward since the system
maintains a bipartite graph with two
classes of nodes: files and functions. A
file in this graph is connected to all the
functions it contains (and equivalently,
a function is connected to all the files it
is contained in). By traversing this
graph, we found 13 other DLLs that
shared the trojan functions of the
original MALWARE DLL.

Figure 4
Identifying
Trojan Code &
Determining
What it Does

ChatGPT
 Report:
Verdicts
Code
Analysis
IOCs
MITRE TTPS

Choose
Trojan
Functions

Trojan
Functions

UC
Function
Trace

UC
Function
YARA

YARA to
Detect Trojan
Functions

Hybrid-
Analysis
YARA Search

Other
Trojan
.NET DLLs
and EXEs
carrying
Trojan
Code

Technical Report 2024 11

In parallel, we used UC Function Yara to
create a specialized Yara rule from the
bytecode of the two trojan functions.
The resulting Yara rule is presented in
Figure 5. This rule was used to perform a
retro hunt on Hybrid Analysis to find DLLs
and EXEs in its repository.

Yara search on Hybrid Analysis using the
rule yielded 26 .NET DLLs presented in
Table 4 (Appendix C). These include the
13 DLLs we found through UC Function
Trace. This table confirms the earlier
hypothesis that if the compromise
occurred outside of James Newton King’s
environment, then the attacker is unlikely
to have singled out NewSoft.JSON.DLL.
The 26 files are from different publishers,
with the vast majority from Microsoft.

Table 4 reveals something particularly
interesting and possibly unexpected. The
“Family” column lists the malware family
associated with each DLL. The intriguing part
is that the 26 files do not all belong to the
same family. Though the MALWARE DLL
(fourth row) that triggered this investigation
is classified under the Snake ransomware
family, the others are associated with various
families, most notably Agent Tesla (6),
FormBook (8), and Vidar (5).

With this data, we can reasonably conclude
that the analysis has revealed a potential
supply chain attack since the trojan code
from the first compromised DLL, MALWARE
DLL, is found in 25 other DLLs, all from
different applications. Although this attack
may not be as sophisticated as the
SolarWinds attack since the trojan DLLs are
not signed, it remains worrisome.

Figure 5
YARA
Generated
from Bytecode
of Trojan
Functions in
MALWARE DLL

Technical Report 2024 12

VirusTotal flagging the 26 trojan DLLs as
malicious is beneficial for threat
research, but antimalware scanning on
desktops and servers is typically done by
one antimalware scanner, not a suite of
70 scanners like VirusTotal. Table 4 shows
that, at the time of writing, 10 out of the
26 trojan variants of legitimate DLLs were
detected by less than half of VirusTotal’s
antivirus scanner suite. In other words,
more scanners do not detect 10 malicious
DLLs than those that do. Despite this,
attacks from these trojans can be
thwarted if the system is locked down to
disallow unsigned executables from
executing. However, this may be easier
said than done since many commercial
and open-source programs are
distributed unsigned.

This case study demonstrates the
feasibility and effectiveness of tracing
shared code across large program
repositories. By starting with a single
DLL, even one that turned out to be
non-malicious, we were able to uncover a
potential supply chain attack through
shared code analysis. The Yara rule
produced by UC from shared code proved
to be a highly accurate IOC.

Our analysis also uncovered intriguing
connections among several seemingly
unrelated malware families: Agent Tesla,
AsyncRat, DCRat, Formbook, NjRat,
Raccoon, RedLine, Snake, and Vidar

Summary

For readers who enjoy Capture
the Flag (CTF) challenges, we
have a challenge for you. There
is one hash notably absent from
Table 4. Early indications
suggest that investigating this
missing hash could reveal a
much more complex story. The
first person to identify the
missing hash is invited to join us
in investigating it further.

Challenge

[4-26]. The fact that the same trojan code
is used to deliver different payloads
suggests either a single threat actor
group is behind these malware families, or
different threat actors have obtained the
DLL infection mechanism from a common
third-party source.

This case study underscores the power of
analyzing shared code at scale, as UC has
done. We utilized code similarity to identify
DLLs with shared code, genomic
difference to locate trojan code, ChatGPT
to analyze the trojan code, and bytecode-
based Yara rules based on the trojan code
to detect not just a single malware family
but a malware delivery mechanism used by
numerous malware families.

Technical Report 2024 13

Whether a software supply chain attack is
executed by compromising the DevOps
workflow of a vendor or by tampering with
the code post-release, the following
recommendations can help mitigate such
risks. The first set of recommendations
outlines basic best practices to limit the
possibility of such attacks:

1. Limit Execution of Unsigned Code:

•	 Configure your environment to
completely disallow the execution of
unsigned code.

•	 When executing unsigned code is
unavoidable, run it within additional
security boundaries, such as isolating
it in containers.

2. Allow Code Only from Approved
Vendors:

•	 Implement strict controls to allow only
signed code.

•	 Further restrict execution to signed
code from a list of approved vendors.

However, as demonstrated by the
SolarWinds attack, the existence of a valid
code signature alone is not sufficient to
guarantee that a program is
uncompromised. Therefore, in line with the
principle of “Trust but Verify,” we
recommend incorporating mechanisms to
audit software updates:

3. Audit Software Updates for Deviation
from Release Notes:

•	 Use code-differencing tools to
compare successive updates and
identify new and modified code.

Recommendations •	 Use advanced tools like ChatGPT to assist
in (a) identifying potential malicious code
within the updates and (b) providing a
report of capabilities introduced and
modified in the update.

•	 Compare the ChatGPT produced analysis
report against the vendor’s release notes
to identify any deviations or
undocumented changes.

4. Audit Software Updates for Deviation from
Software Bill of Material (SBOM).

•	 Identify components in delivered software
by code-similarity with a catalogue of
known software.

•	 Verify the SBOM against the components
identified.

5. Audit Software Updates for Proximity to
Malware:

•	 Using UC like code-similarity search find
malware that share code with the update.

•	 Analyze the common code for
maliciousness.

•	 Analyze the differing code in the malware
to detect potential trojan code.

•	 Develop Yara signatures from trojan code
for preventive defense.

6. Audit Software Updates for the Presence
of Known Supply Chain Attacks:

•	 Maintain a repository of Yara signatures
of known supply chain attacks.

•	 Search for these signatures within
software updates.

By adopting these best practices and auditing
mechanisms, organizations can significantly
reduce the risk of software supply chain
attacks and ensure a higher level of security
for their software infrastructure.

Technical Report 2024 14

For the benefit of future research, provided
below are articles discussing the various
malware families that have been found to
have utilized the trojan DLL delivery
mechanism unearthed in this study.

1.	 FireEye, SolarWinds Supply Chain Attack Uses SUNBURST Backdoor, Mandiant,
December 13, 2020

2.	 Microsoft Threat Intelligence, Analyzing Solorigate, the compromised DLL file that
started a sophisticated cyberattack, and how Microsoft Defender helps protect
customers, Microsoft, Publish Date unknown, Last accessed July 15, 2024.

3.	 Bernardo Quintero, From Assistant to Analyst: The Power of Gemini 1.5 Pro for
Malware Analysis, Google Cloud Blog, April 29, 2024.

4.	 Bill Toulas, Google ads push ‘virtualized’ malware made for antivirus evasion,
Bleeping Computer, February 2, 2023.

5.	 James Arndt, Understanding Agent Tesla: Notorious Keylogger, Cofense, February
21, 2023

6.	 Xiaopeng Zhang, New Agent Tesla Variant Being Spread by Crafted Excel
Document, FortiGuard Labs, September 4, 2023.

7.	 Bernard Bautista, Agent Tesla’s New Ride: The Rise of a Novel Loader, Trustwave
Spiderlab Blogs, March 26, 2024

8.	 David Brunsdon, Agent Tesla Unmasked: Revealing Interrelated Cyber Campaigns,
HYAS, April 29, 2024.

9.	 Pedro Tavares, Unmasking AsyncRAT Malware: In-depth Analysis & Prevention Tips
| Infosec, Infosec Institute, January 10, 2023.

10.	 	Lakshya Mathur & Vignesh Dhatchanamoorthy, Unmasking AsyncRAT New
Infection Chain, McAfee Labs, November 3, 2023.

11.	 The BlackBerry Research and Intelligence Team, How DCRat (AKA Dark Crystal)
Works, Blackberry, May 9, 2022.

12.	 Muhammad Hasan Ali, A deep dive into DCRAT/DarkCrystalRAT malware. August
30, 2023.

References

[Sunburst]

[Google AI]

[Agent Tesla]

[AsyncRAT]

[DCRat]

Technical Report 2024 15

[Formbook]

[NjRAT]

[Raccoon]

[RedLIne]

[Snake]

[Vidar]

13.	 Xiaopeng Zhang, Deep Analysis: New FormBook Variant Delivered in Phishing
Campaign – Part I ,Fortiguard Labs, April 12, 2021.

14.	 	Aaron Stratton, njRAT Malware Analysis. Introduction | by Aaron Stratton,
InfoSec Write-ups, October 7, 2022.

15.	 Splunk Research Team, More Than Just a RAT: Unveiling NjRAT’s MBR Wiping
Capabilities, Splunk, October 31, 2023.

16.	 	Pierre Le Bourhis, Quentin Bourgue and Sekoia TDR, Raccoon Stealer v2 - Part
2: In-depth analysis, Sekoia.io Blog, June 29 2022.

17.	 Noel Anthony Llimos, Raccoon Stealer Announce Return After Hiatus,
Cyberint, August 15, 2023.

18.	 A Detailed Analysis of the RedLine Stealer, Security Scorecard, April 1, 2022.

19.	 Monika Grigutytė, What is RedLine Stealer, and how does it work?, NortVPN,
July 13, 2023.

20.	New RedLine Stealer Variant Disguised as Game Cheats Using Lua Bytecode
for Stealth, The Hacker News, April 21, 2024.

21.	 Evident CERT Team, Snake Malware - Taken down by the FBI after 20 years of
existence, Atos, March 17, 2023.

22.	 Cybersecurity Advisory, Hunting Russian Intelligence “Snake” Malware, CISA,
May 9, 2023.

23.	 Cybereason Global SOC Team, THREAT ANALYSIS REPORT: Snake Infostealer
Malware, Cyberreason, Publish date unknown, Last accessed July 15, 2024

24.	 Vidar - Information-Stealing Malware Malvertises on Google, Darktrace,
January 30, 2023.

25.	 GridinSoft, Vidar Stealer Malware Detailed Analysis 2024, Gridinsoft, February
15, 2024.

26.	Vidar Stealer: An In-depth Analysis of an Information-Stealing Malware -
CYFIRMA, CYFIRMA, June 3, 2024.

Technical Report 2024 16

Verdict: Malicious
Summary of Activities

1. Class Initialization and Component Binding

•	 The Yqnpressure.Ujbexpert class
constructor initializes window
components and binds certain
commands and mouse events.

•	 Functions dppproducer, akucotton,
and dmcmargin are called, indicating
various initialization and event
handling routines.

2. Command and Event Handling

•	 The akucotton function handles
execution of commands, particularly
related to undo operations.

•	 The dmcmargin function deals with
mouse button events, specifically
checking for left mouse button clicks
and storing state accordingly.

Appendix A: Maliciousness Analysis

3. State Management and Undo Mechanism

•	 The Dppproducer function initializes
certain visibility properties and loads
application components, suggesting
manipulation of UI elements.

•	 The Dwgsurely function sets up the
sgranimal field, indicating interaction
with a canvas or drawing component.

•	 The Epfgreatest.UndoRedo namespace
contains classes like Mwztarget
responsible for managing undo/redo
operations, storing and restoring states.

4. Resource Management

•	 The Cllindeed.Lqphall functions manage
resource localization, handling resource
manager and culture settings.

5. Obfuscation and Decryption

•	 The Asvbeer.Isveventually::Plnarrive
function suggests obfuscation
techniques, involving base64 encoding
and XOR operations to manipulate byte
arrays, potentially indicating payload
decryption.

The following presents the verbatim output of ChatGPT in response to the prompt
presented earlier to analyze the 21 unique functions of MALWARE DLL.

Technical Report 2024 17

6. Dynamic Assembly Loading

•	 The Epfgreatest.Ztdvoter::Main
function dynamically loads
assemblies and executes methods,
which is a common technique used in
malware to execute payloads at
runtime.

7. Late Binding and Reflection

•	 Functions make extensive use of late
binding and reflection
(microsoftvisualbasiccompile-
rservicesnewlatebinding::latecall,
systemreflectionassembly::load),
which can be used to dynamically
invoke methods and load assemblies,
often seen in obfuscated malware.

Indicators of Compromise
(IOCs)

1. URLs:

•	 No explicit URLs were found in the
decompiled code.

2. Created Files:

•	 The code does not explicitly mention
file creation, but dynamic assembly
loading implies that temporary files or
in-memory assemblies may be
involved.

3. Mutex:

•	 No mutex creation detected, but
further dynamic analysis might reveal
synchronization mechanisms.

4. Network Activity:

•	 The code does not explicitly mention
network activities, but dynamic
assembly loading and obfuscation
suggest potential communication
with external servers.

5. Other Artifacts:

•	 Extensive use of obfuscation
techniques (base64 encoding, XOR
operations).

•	 Dynamic assembly loading and
method invocation.

Technical Report 2024 18

Appendix B: MITRE ATT&CK Framework

The following presents the verbatim response of ChatGPT when asked to map the
malicious behavior to MITRE ATT&CK TTPs.

Based on the detailed analysis of the dec ompiled code, several MITRE ATT&CK tactics,
techniques, and procedures (T TPs) can be associated with the observed malicious
behaviors. Here is a mapping t o relevant MITRE ATT&CK T TPs:

T1127 -Trusted Developer Utilities Proxy Execution:

T1127 -Trusted Developer Utilities Proxy Execution:

T1059 - Command and Scripting Interpreter:

T1055 - Process Injection

T1490 - Inhibit System Recovery

The code dynamically loads assemblies and executes methods, a
common technique to execute payloads at runtime without directly
embedding them in the initial code.

The code employs base64 encoding and XOR operations to obfuscate
payloads, making it difficult for static analysis tools to detect malicious
content.

The use of reflection and late binding
(microsoftvisualbasiccompilerservicesnewlatebinding::latecall,
systemreflectionassembly::load) suggests manipulation of code and
command execution at runtime.

Dynamic assembly loading and manipulation may involve injecting
malicious code into the memory space of legitimate processes.

The Epfgreatest.UndoRedo namespace manages undo/redo operations,
which might be used to tamper with system states and inhibit recovery
processes.

1. Dynamic
Component Loading

2. Obfuscation

3. Command and
Scripting
Interpreter

4. Process
Injection

5. Inhibit System
Recovery

Technical Report 2024 19

T1083 - File and Directory Discovery:
While not explicitly mentioned, the initialization and interaction with
various UI components suggest potential enumeration and manipulation
of files and directories.

6. File and
Directory
Discovery

T1132 - Data Encoding:

T1045 - Software Packing:

T1059 - Command and Scripting Interpreter:

The use of base64 encoding to encode payloads or other data for
transmission.

Obfuscation techniques including encoding and runtime decryption are
indicative of packing strategies to evade detection.

Interaction with system resources and dynamic component loading
suggests potential gathering of system information to tailor further
actions.

7. Data Encoding

8. Software
Packing

9. System
Information
Discovery

Technical Report 2024 20

Appendix C: Trojan Versions of Legitimate DLLs
Table 4
Malicious .NET DLL containing malicious code found in MALWARE DLL

SHA256Nr Family

0703f29cc8457988de8ab0e0a8b187521fce8812bbc3bb216e29f8907ffe4c66

126345195badc693f032508364890a81f914d05b08f925ca4b48161e2ddf2ef8

1568cf8a9d6742a6d840c479a58d9d2b0613394d8065b1a2d2e934706a43df3d

15bad895c6afb47d3dbf662a5743d49ce0bba45b110b494645d92b2db423ac4c (MALWARE DLL)

1e5f4297bced52e5ea9c305b82f7aa6d2305930fb93c3018f6e4d6d6a2927764

2ffaee43775fc2cd680d702a6076ac1d8bb8bf17eab0305a4290cb2ac66a865b

315ea8af1371ec210937876305db47f1116a5e75b8a74ffab043267d55c9a46b

32ca6952f2d306c5229317314380f71455d772ec84cfff2feca9d74a2364d036

34c16889e439ea444e969c6bc6fef3296dff405444f130ed9f3a82f47f6f1575

39c887e8c10540bd9ac9145877cd3c5e86040b75fbdda1e65204bd67ad531db2

6569e6fd303dc3e667758a528e55d94fa7548687efde5deeda81887b43b6be8d

9262f758cc7ded37f9e1362d7e07a2a2603790da6ee9ce22366e105e2d9591d9

9bd924c7e94a5e95dc52fe98173b92816ccd1854a9612a9896f0d1f4b4ac53ae

aef3536e125a558e68c2add19613754b67df5d965fe630e645ee16f90e9ca12a

b6c377b6acf9d822885bd750074103a2468bd47ce77d1e72303f053dba49f743

c2aa3b42821e22b2ad2c61981ffcbfbc9c24c2bc9c61899c6337155f3688d79a

c8c56bc8efd9d68a8a854f608c5c1a90369f92dfc6f2cda2bb5f6a27ad2f6710

cb1b1d4e4f463115da0a4934d1d38d451a2a90c3fc83a4657b2efd4feb5f66b0

cf6c3743ab5657d587fbd8e98b804b11e749cd11e9f0e4ec9644104b240437aa

d0c16fc8e7e0701da3fcd850c6834f772dd9d6daab6a0ea5f507baba97d39913

d407dea31b4e55d9955bdea84e990205f7bbea67fd39e82bb61f942dc20e9b54

dc6a963a037578ef826cb4bc2cac32781f2ea15eb8126e40fd809b2a3d7a33cd

df809087a49af7316955ba3bc0dc35d086529be98bd82df7ab4ccfa22c38e97d

ec9a5f5033e8421fe260cb9ad30f2cb4d83ff5bb09a9a45593f2267d9bb495eb

ef6ff8755172436f00bece971170bd7e680ab77e88e510078d8cd0744d4d2d3e

f6d87ecd12a6724e65e0d2be0f8d787b5184c16ba178e9c14913b23ea226300c

AgentTesla

Njrat

Vidar

Snake

DCRat

Vidar

AsyncRat

Vidar

AgentTesla

Formbook

Formbook

Formbook

Formbook

RedLine

Formbook

Formbook

Snake

AgentTesla

Formbook

AgentTesla

Raccoon

Formbook

AgentTesla

AgentTesla

Vidar

Vidar

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Technical Report 2024 21

Nr Filename VT Detection Ratio

Microsoft.IdentityModel.Clients.ActiveDirectory.dll

Microsoft.IdentityModel.Clients.ActiveDirectory.dll

Rebex.Net.Ssh.dll

Newtonsoft.Json.dll

Microsoft.VisualStudio.Services.CodeReview.Discussion.WebApi.dll

Microsoft.VisualStudio.DiffBase.Controls.dll

Microsoft.VisualStudio.TestPlatform.Client.dll

No name

Microsoft.VisualStudio.WindowsAzure.CommonAzureTools.Contracts.Internal.dll

Microsoft.WebTools.Languages.Html.dll

Microsoft.Ingestion.Shared.WebApi.Client.dll

Rebex.Net.SecureSocket.dll

Microsoft.PythonTools.IronPython.Interpreter.dll

SQLitePCLRaw.core.dll

Microsoft.DiaSymReader.Converter.dll

NuGet.Frameworks.dll

Microsoft.WindowsAzure.Storage.dll

Microsoft.Diagnostics.MemoryGraph.dll

Microsoft.AspNet.Scaffolding.12.0.dll

Microsoft.VisualStudio.Workspace.Extensions.dll

Microsoft.VisualStudio.Utilities.Internal.dll

Microsoft.VisualStudio.TeamFoundation.Lab.dll

SQLitePCLRaw.core.dll

Microsoft.TeamFoundation.Core.WebApi.dll

Microsoft.VisualStudio.Services.Search.Shared.WebApi.dll

ServiceHub.Host.CLR.exe

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

37/67

44/68

27/67

51/74

53/71

42/66

23/67

42/68

22/66

32/66

29/52

41/68

45/70

35/68

41/70

21/66

25/67

33/67

43/71

27/66

35/66

33/66

15/67

36/67

40/68

39/68

Technical Report 2024 22

Authors

Dr. Arun Lakhotia

 @DrArunL

CTO, Unknown Cyber Inc

Professor of Computer Science,
University of Louisiana at Lafayette

Bob Miller

 @RobertDMiller

COO, Global Data Systems

https://www.linkedin.com/in/drarunl/
https://www.linkedin.com/in/robertdmiller/

Technical Report 2024 23

About Unknown
Cyber

About Global
Data Systems

Unknown Cyber is an In-Q-Tel Portfolio
Company that is founded on technology
developed at the University of Louisiana at
Lafayette under the DARPA Cyber Genome
Project to detect, hunt, and attribute
unknown malware through their code. Our
many unique innovations automate the
capability to track the evolution of code
through generations of malicious and
benign programs, identify novel variants of
malware rapidly and at scale, and
automatically create very precise Yara rule
from the bytecode of functions unique to a
malware. The technology has been
validated by very experienced professionals
in MSSPs, Enterprise SOCs, and intelligence
agencies.

Global Data Systems is a leading full-service
Managed Services Provider (MSP)/Managed
Security Services Provider (MSSP), offering
innovative IT solutions and services
grounded in the principles of “Connect.
Collaborate. Protect.” With 37 years of
industry expertise, we have become the
trusted partner for midsize and large
enterprises, providing a comprehensive
suite of IT services that adapt to the
dynamic needs of modern businesses. From
network management and cloud solutions
to cybersecurity and communication
technologies, our customer-centric
approach tailors services to address the
unique challenges of each organization. We
excel in enabling robust connections,
promoting collaboration through innovative
tools, and prioritizing security with cutting-
edge cybersecurity measures. Our
dedicated team of experts puts their
knowledge to work for our clients, assisting
them in solving their IT challenges. This
commitment to excellence propels Global
Data Systems to higher levels of success
and client satisfaction each year, ensuring
impeccable service delivery from solution
design to simplified billing, all with
24x7x365 support.

Technical Report 2024 24

For more
information
Phone: 1-888-678-6992

Email: info@UnknownCyber.com

Website: www.UnknownCyber.com

